Chapter 3
BILLIONS
First, let´s reflect on the "never well weighted" seven days.
Of course, the seven biblical days should have some sort of explanation, I thought, and I devoted myself to find it.
The first thing that occurred to me was that if God was infinite, a God´s day might last a billion years, so seven days of God may well be six billion years. You may say, why six billion years? Well, because it is currently estimated that from the original nebula to the present six billion years have passed, and four billion six hundred million years since the consolidation of the Earth.
Although Occident has not handled major figures-and when I say major figures I mean numbers as large as billions of years- in their mythologies, it may be interesting to note that in India, at the time of writing the Genesis-they were already used to thinking of numbers of that magnitude.
For example: according to the Vedic scriptures [4], the four yugas (ages) form a cycle of 4,320,000 years (Majá-yuga, or 'great age'), which is repeated again and again. The first is the Satya-yuga or 'age of truth' of 1,728,000 years in which the average life span of a person was 100,000 years. It is the Golden Age, according to another classification.
Then comes the Duapara-yuga or 'second age' which covers 1,296,000 years with an average life span of 10,000 years; it is also called the Silver Age.
The 'third age', Treta-yuga, lasted about 864,000 years, with an average life span of 1,000 years; it is also known as the Bronze Age (although it is not meant to match the Bronze Age in India).
Finally, Kali Yuga or "age of quarrel" lasted 432,000 years where the average life span of a human being was 100 years (at the beginning of it, 5100 years ago). It was called Iron Age (it is not meant to match the Iron Age in India either).
Interesting, very interesting.
4 - Vedas (literally "knowledge" in Sanskrit) are four ancient texts, the basis of Vedic religion, which was prior to the Hindu religion. The Sanskrit word Veda comes from an Indo-European term (Weid), related to the vision, is the root of the Latin words vedere (see) and Veritas (truth) and the Spanish words "ver" (see) and “verdad” (truth). The Vedic texts were developed into what is called the Vedic culture, based on castes (varna or 'color') and ashrams (religious life stages).
So far I didn´t find any drawbacks to consider the "seven days".
If one believes in God, it would be normal, I think, to believe that He is infinite, thus it has not bothered me at all changing days for millions or billions of years.
Let´s continue.
Let´s consider now the explanation that science gives us about the birth of the solar system and our planet Earth, in order to then be able to compare it with the text of Genesis.
I invite you to place ourselves in place and time.
Let's go to that moment when it all started in our little corner of the universe.
Six billion years ago, a cloud of gas and stardust-what is called a planetary nebula-, floats adrift in space.
This nebula, the cloud of stellar gas and dust is the waste product of a star that after its death as a supernova [5] (star that explodes in its death, its final stage) scatters into space the materials that have been formed inside it from simpler elements.
The objects created in this stellar oven -now more complex- make up this huge cloud of dust, gas and ice that floats peacefully adrift. Our local nebula.
5 - Supernova: Star that explodes and throws around most of its mass to high speeds. After this explosive phenomenon there may be two outcomes: either the star is completely destroyed, or its central core remains, which in turn collapses by itself giving life to a very massive object such as a neutron star or a Black Hole.
The phenomenon of the explosion of a supernova is similar to the explosion of a Nova, but with the essential difference that in the first case the energies involved are a million times stronger. When a catastrophic event like this happens, astronomers observe a star igniting in the sky that can reach apparent magnitudes of -6m or more.
We have testimonies of such events: in 1054, a star in the constellation Taurus ignited, the remains of which can still be seen in the form of the beautiful Crab Nebula; in 1572, the great astronomer Tycho Brahe observed a supernova shining in the constellation Cassiopeia, in 1640, a similar phenomenon was observed by Kepler. These are all appearances of supernovae that exploded in our Galaxy.
Today it is estimated that each galaxy produces, on average, a supernova every six centuries. A famous supernova of an external galaxy is Andromeda, appeared in 1885.
At one point, this calm, this placid floating, is altered by the arrival of waves, wave-shock waves produced possibly by the explosion of another supernova, another star which ends its days in the vicinity.
These shock waves, these waves that impact and shake our peaceful nebula trigger a contraction on it, and when it contracts it starts spinning and flattening.
This flattened disk that is now our planetary nebula leads most of the material toward the center, where it accumulates.
This huge mass of matter (mostly gas) makes it collapse under its own weight and due to gravity, initiating the combustion of a fledgling central star, the Sun.
The same force of gravity -the same gravitational force- that generates matter accumulation in the heart and leads to the creation of a star, in our case the Sun, also produces swirls and clumps in the dust disk.
These lumps that turn like swirls about themselves and continue their journey around the center are the nodes that will give rise to planets.
These primordial planets, these nodes or swirls of stellar matter, continue their path around the sun, but not in a circular motion, but in a spiral, falling toward it, moving closer with every lap, every orbit. It follows that when their spins started, the original swirls, they were farther away than the "finished" planets are now.
And what was the consequence of that approach to the Sun down that spiral road? Well, what happened was that those baby planets we might say were "cleaning" of debris, dust, and gas the space through which they passed and, thus, they increased their mass with the captured matter.
So, let's recap and look at the big picture.
First comes a chaotic cloud of dust and gas, the result of a prior supernova explosion that scatters its matter into space.
Then, an accretion disk is generated from that matter which will give rise, first to the Sun and then to the planets.
Finally, that disk is itself a cloud of dust and gas, which the orbiting planets will be cleaning from the surrounding space.
When they "sweep" that material by drawing it to themselves, the planets will increase their size with the captured dust and gas.
Many of these rocks, dust and ice [6], remnants from that cloud, are the meteorites that still today keep hurtling to earth, and that have scarred the surface of the moon and our own planet.
Also the solar wind, product of the nuclear combustion of the Sun, cleans the surrounding space from the light material and dislodges it into the confines of the system.
While this wave of gas and light dust is ejected by the solar wind, it is again caught in its path by the gravitational pull of planets in its wake, thus increasing a little more the mass of each one of them.
6- Zodiacal dust: Astronomers have detected interplanetary dust, remnant and new, -product of the arrival of interstellar dust and comets, and the primordial nebula-, in our solar system. It is called zodiacal dust and generates a luminescence that can be seen in the plane of the planets, that is, the plane of the ecliptic, where the accretion disk was, in the beginning.
Several solar systems in formation have also been discovered in which one can appreciate the protoplanetary dust existing between the planets that are consolidating and the central star.
After 4,000 million years of life of the Sun and its solar wind, dust still floats in interplanetary space. The remaining dust of the original nebula to which the comets and the coming from the interstellar space are added permanently, that is, the dust that is beyond the solar system and that arrives to our system thanks to the wind currents of the stars, novae, gravitational waves and all the dynamics of the galaxy.
Well, we already have got primitive planets revolving in nearly circular orbits around the sun, because when the overall movement of the system was stabilized, these orbits are no longer spiral.
These planets, which were receiving material from the space gas and powder -possibly often in the form of violent collisions- must have existed at the time in molten lava state (in the case of non-gaseous planets),because the friction generates heat, and those collisions produced a lot of friction which resulted in a large increase in temperature that melted rocks and dust uniting all in single, and often almost spherical masses.
Since the planets were receiving less and less impacts, they began to cool, and as they cooled down, they generated a shell, a scab, a solid surface on the earth's crust on which we currently walk. Not only the surface was formed, but also the gases that were released and trapped by the force of gravity formed an atmosphere; this was the case in our planet Earth and how the atmosphere which we breathe today was created.
Meanwhile, the ice of the original cloud, also trapped, originated water and therefore its accumulation would generate the seas, rivers and rain.
Well, okay, let´s now think about how it was like when the planet, even though it had cooled enough to form the earth's crust, was still too hot for water to accumulate in liquid form on the surface. At that time, the cycle: evaporation-condensation-rain was much faster due to high surface temperatures. In those days, the humidity was truly unbearable. Showers and thunderstorms occurred without continuity. The rain evaporated as soon as it touched the earth.
An impenetrable sky, heavy fog and sunlight that could barely filtered.
Surely it would have been impossible for one person to have been on the surface, to have seen the stars or the sun itself due, first, to the thickness of the clouds and fog, and secondly, because of the remnant dust which would still be floating in space among emerging planets.
Sounds too complicated or difficult to imagine? Yes, it does.
I think that it would be a good exercise to put ourselves in that situation to imagine ourselves in the midst of a severe sandstorm and once there try to see the Sun.
We would probably see the light, the glow that surrounded us, but it would be difficult to accurately identify the source, the origin of that light. Dust, "sand" that flies in the storm, that airborne dust would prevent us from seeing the Sun.
Moreover, while this "sandstorm" goes on "outside", here, in the planet's atmosphere, we would be in the middle of a torrential boiling rain with clouds, thunder and lightning, as well as volcanic eruptions, ash rains and poisonous fumes.
Certainly all a stage, a huge stage, a scenario very different from today.
This scenario, in which we probably would not last a minute nowadays, would create the ideal conditions to start the journey of life (humidity, temperature, solar radiation and cosmic rays, which impacted with hardly any impediments). Ideal conditions that would create the first amino acids, the first molecular chains. Chains that later would give rise to more complex organisms.
Now, that the conditions are ripe, let´s examine the next step. The evolution of life.
નેક્સટ...
Chapter 4
AND IN THIS CORNER… LIVE!
We saw earlier that life as we know it on our planet, began with and in the water. Water has a key role in our kind of existence. Consider that we humans are composed of seventy percent of that element; we could almost say that we are sea animals adapted to the surface.
Well, we must place ourselves there and think that, the planet is cooling, the water remains liquid longer, and it is accumulating in the lowest places by simple gravity simultaneously.
This initial ocean, it seems, was just one and so were the lands -as continents.
Science calls today that super-continent Vaalbara-Pangaea [7]...